POLYMAT

Inline monitoring of particle size in emulsion polymerization processes by Photon Density Wave (PDW) Spectroscopy

¹U.O. Aspiazu, ¹M. Paulis, ¹J.R. Leiza

¹ POLYMAT, Kimika Aplikatua saila, Kimika Fakultatea, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, 20018 Donostia-San Sebastián.

Table of contents

1. Introduction

- i. NanoPAT
- ii. PDW background
- 2. Analysed process
- 3. Results
- 4. Conclusions

1 i) Introduction.

NanoPAT European Project: Application of three new realtime analytical tools for particle size (dp) and particle size distribution (PSD) in-line or on-line monitoring.

Present Work objective: Assessing Photon Density Wave (PDW) spectroscopy analysis method as in-line monitoring technique in emulsion polymerization processes.

Polyacrylate latex synthesis

Emulsion polymerization process

*Hass, Bressel, Münzberg, Reich, Appl. Opt. 52, p. 1423-1431 (2013)

6

3. Results. Inline analysis

Effect of laser wavelength

9

Good agreement between inline PDW and offline DLS results

Analysis of broader dp and SC range Coagulation detection Bimodal latex analysis

3. Results. Particle size range analysis

SC40 %; monomodal; dp 175→400 nm

3. Results. Coagulation detection

3. Results. Detection of bimodal latex formation

SC40 %; bimodal; dp 45 \rightarrow 80/300 nm (Post-process)

4. Conclusions

- ✓ Accurate monitoring of particle size during seeded semibatch emulsion polymerization processes (SC of 40 % and particle size range 50-300 nm).
- ✓ PDW particle size is within number and intensity average DLS particle sizes (closer to dp,N).
- ✓ Aggregation of polymer particles can be detected. Reduced scattering is more sensitive than particle size.
- ✓ The detection of new nucleations is challenging due to the big influence of the existing large polymer particles in the light scattering.

Acknowledgement

Thank you for your attention

skal Herriko

POLYMAT

Inline monitoring of particle size in emulsion polymerization processes by Photon Density Wave (PDW) Spectroscopy

¹U.O. Aspiazu, ¹M. Paulis, ¹J.R. Leiza

¹ POLYMAT, Kimika Aplikatua saila, Kimika Fakultatea, University of the Basque Country UPV/EHU, Joxe Mari Korta zentroa, 20018 Donostia-San Sebastián.